Draft ECMA-262

September 29, 2016

ECMAScript® 2017 Language Specification


This Ecma Standard defines the ECMAScript 2017 Language. It is the eighth edition of the ECMAScript Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely used general-purpose programming languages. It is best known as the language embedded in web browsers but has also been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation of future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web where it has become the programming language that is supported by essentially all web browsers. Significant work was done to develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language specification that have become common among browser implementations and added support for new features that had emerged since the publication of the third edition. Such features include accessor properties, reflective creation and inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The Fifth Edition was adopted by the Ecma General Assembly of December 2009.

The fifth Edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication. However, this was preceded by significant experimentation and language enhancement design efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a fifteen year effort. The goals for this addition included providing better support for large applications, library creation, and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming, destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode supplemental characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth edition was adopted by the General Assembly of June 2015.

This ECMAScript specification is the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally, numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown. This specification also includes support for a new exponentiation operator and adds a new method to Array.prototype called includes.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed implementation experiments, contributed test suites, and educated the world-wide developer community about ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, 6th Edition Project Editor

Brian Terlson
ECMA-262, 7th Edition Project Editor


This Standard defines the ECMAScript 2017 general-purpose programming language.


A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version of the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface that supports programs that need to adapt to the linguistic and cultural conventions used by different human languages and countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide properties not described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of the “future reserved words” listed in subclause of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension in subclause 16.2.

3Normative References#

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10646:2003: Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda, or successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.

ECMA-404, The JSON Data Interchange Format.


This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-purpose programming language. A scripting language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used to provide core scripting capabilities for a variety of host environments. Therefore the core language is specified in this document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in many different environments and scales. As the usage of ECMAScript has expanded, so has the features and facilities it provides. ECMAScript is now a fully featured general-purpose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C, Java™, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages – C.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1Web Scripting#

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further, the host environment provides a means to attach scripting code to events such as change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is possible to distribute computation between the client and server while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the ECMAScript execution environment.

4.2ECMAScript Overview#

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more properties each with attributes that determine how each property can be used—for example, when the Writable attribute for a property is set to false, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, String, and Symbol; an object is a member of the built-in type Object; and a function is a callable object. A function that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in objects include the global object; objects that are fundamental to the runtime semantics of the language including Object, Function, Boolean, Symbol, and various Error objects; objects that represent and manipulate numeric values including Math, Number, and Date; the text processing objects String and RegExp; objects that are indexed collections of values including Array and nine different kinds of Typed Arrays whose elements all have a specific numeric data representation; keyed collections including Map and Set objects; objects supporting structured data including the JSON object, ArrayBuffer, and DataView; objects supporting control abstractions including generator functions and Promise objects; and, reflection objects including Proxy and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple sequences of statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with properties, and defined functions are not required to have their declarations appear textually before calls to them.


Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or via constructors which create objects and then execute code that initializes all or part of them by assigning initial values to their properties. Each constructor is a function that has a property named "prototype" that is used to implement prototype-based inheritance and shared properties. Objects are created by using constructors in new expressions; for example, new Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that depend on the constructor. For example, Date() produces a string representation of the current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of its constructor's "prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the property of that name in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned directly is examined for such a property; if that object contains the named property, that is the property to which the reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

Figure 1: Object/Prototype Relationships
An image of lots of boxes and arrows.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2, cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2. The dashed lines represent the implicit prototype relationship; so, for example, cf3's prototype is CFp. The constructor, CF, has two properties itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties found in CFp's implicit prototype chain that are not named q1, q2, or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them. That is, constructors are not required to name or assign values to all or any of the constructed object's properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by assigning a new value to the property in CFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like abstraction pattern used by the built-in objects.

4.2.2The Strict Variant of ECMAScript#

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of some features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript source text units. Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes restrictions that have local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple source text units. A complete ECMAScript program may be composed of both strict mode and non-strict mode ECMAScript source text units. In this case, strict mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an implementation must support the combination of unrestricted and strict mode source text units into a single composite program.

4.3Terms and Definitions#

For the purposes of this document, the following terms and definitions apply.


set of data values as defined in clause 6 of this specification

4.3.2primitive value#

member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6


A primitive value is a datum that is represented directly at the lowest level of the language implementation.


member of the type Object


An object is a collection of properties and has a single prototype object. The prototype may be the null value.


function object that creates and initializes objects


The value of a constructor's prototype property is a prototype object that is used to implement inheritance and shared properties.


object that provides shared properties for other objects


When a constructor creates an object, that object implicitly references the constructor's prototype property for the purpose of resolving property references. The constructor's prototype property can be referenced by the program expression constructor.prototype, and properties added to an object's prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by using the Object.create built-in function.

4.3.6ordinary object#

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.3.7exotic object#

object that does not have the default behaviour for one or more of the essential internal methods


Any object that is not an ordinary object is an exotic object.

4.3.8standard object#

object whose semantics are defined by this specification

4.3.9built-in object#

object specified and supplied by an ECMAScript implementation


Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and supply additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

4.3.10undefined value#

primitive value used when a variable has not been assigned a value

4.3.11Undefined type#

type whose sole value is the undefined value

4.3.12null value#

primitive value that represents the intentional absence of any object value

4.3.13Null type#

type whose sole value is the null value

4.3.14Boolean value#

member of the Boolean type


There are only two Boolean values, true and false

4.3.15Boolean type#

type consisting of the primitive values true and false

4.3.16Boolean object#

member of the Object type that is an instance of the standard built-in Boolean constructor


A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be coerced to a Boolean value.

4.3.17String value#

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer


A String value is a member of the String type. Each integer value in the sequence usually represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they must be 16-bit unsigned integers.

4.3.18String type#

set of all possible String values

4.3.19String object#

member of the Object type that is an instance of the standard built-in String constructor


A String object is created by using the String constructor in a new expression, supplying a String value as an argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a String value by calling the String constructor as a function (

4.3.20Number value#

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008 value


A Number value is a member of the Number type and is a direct representation of a number.

4.3.21Number type#

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative infinity

4.3.22Number object#

member of the Object type that is an instance of the standard built-in Number constructor


A Number object is created by using the Number constructor in a new expression, supplying a number value as an argument. The resulting object has an internal slot whose value is the number value. A Number object can be coerced to a number value by calling the Number constructor as a function (


number value that is the positive infinite number value


number value that is an IEEE 754-2008 “Not-a-Number” value

4.3.25Symbol value#

primitive value that represents a unique, non-String Object property key

4.3.26Symbol type#

set of all possible Symbol values

4.3.27Symbol object#

member of the Object type that is an instance of the standard built-in Symbol constructor


member of the Object type that may be invoked as a subroutine


In addition to its properties, a function contains executable code and state that determine how it behaves when invoked. A function's code may or may not be written in ECMAScript.

4.3.29built-in function#

built-in object that is a function


Examples of built-in functions include parseInt and Math.exp. An implementation may provide implementation-dependent built-in functions that are not described in this specification.


part of an object that associates a key (either a String value or a Symbol value) and a value


Depending upon the form of the property the value may be represented either directly as a data value (a primitive value, an object, or a function object) or indirectly by a pair of accessor functions.


function that is the value of a property


When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32built-in method#

method that is a built-in function


Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify and provide other additional built-in methods.


internal value that defines some characteristic of a property

4.3.34own property#

property that is directly contained by its object

4.3.35inherited property#

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.4Organization of This Specification#

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and the execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects that are available for use by ECMAScript programs as they execute.

5Notational Conventions#

5.1Syntactic and Lexical Grammars#

5.1.1Context-Free Grammars#

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2The Lexical and RegExp Grammars#

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols Unicode code points that conform to the rules for SourceCharacter defined in 10.1. It defines a set of productions, starting from the goal symbol InputElementDiv, InputElementTemplateTail, or InputElementRegExp, or InputElementRegExpOrTemplateTail, that describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become part of the stream of input elements and guide the process of automatic semicolon insertion (11.9). Simple white space and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form /**/ regardless of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the code points as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that describe how sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3The Numeric String Grammar#

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This grammar appears in

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4The Syntactic Grammar#

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two alternative goal symbols Script and Module, that describe how sequences of tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a stream of input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal (Script or Module), with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which token sequences are accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered acceptable if a line terminator character appears in certain “awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that permit token sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for object literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided that further restricts the acceptable token sequences. In certain contexts, when explicitly specified, the input elements corresponding to such a production are parsed again using a goal symbol of a supplemental grammar. The input stream is syntactically in error if the tokens in the stream of input elements parsed by a cover grammar cannot be parsed as a single instance of the corresponding supplemental goal symbol, with no tokens left over.

5.1.5Grammar Notation#

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in fixed width font, both in the productions of the grammars and throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear in a script exactly as written. All terminal symbol code points specified in this way are to be understood as the appropriate Unicode code points from the Basic Latin range, as opposed to any similar-looking code points from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is introduced by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the syntactic definition:


states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList:AssignmentExpression ArgumentList,AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and one that includes it. This means that:


is a convenient abbreviation for:

VariableDeclaration:BindingIdentifier BindingIdentifierInitializer

and that:


is a convenient abbreviation for:

IterationStatement:for(LexicalDeclaration;Expressionopt)Statement for(LexicalDeclarationExpression;Expressionopt)Statement

which in turn is an abbreviation for:

IterationStatement:for(LexicalDeclaration;)Statement for(LexicalDeclaration;Expression)Statement for(LexicalDeclarationExpression;)Statement for(LexicalDeclarationExpression;Expression)Statement

so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “[parameters]”, which may appear as a suffix to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma separated list of names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList[Return]:ReturnStatement ExpressionStatement

is a convenient abbreviation for:

StatementList:ReturnStatement ExpressionStatement StatementList_Return:ReturnStatement ExpressionStatement

and that:

StatementList[Return, In]:ReturnStatement ExpressionStatement

is an abbreviation for: